```
Name: D.O.E:
Section:
D.O.S:
Class Roll No:
Stream:
University Roll No:
```


REDOX TITRATION

(Estimation of $\mathrm{Fe}^{\mathbf{2 +}}$ in Mohr's salt using permanganomerty)

Theory:

The reaction between Mohr's salt solution and potassium permanganate solution in acid medium is oxidation-reduction or redox reaction where potassium permanganate solution is the oxidizing agent and Mohr's salt solution is the reducing agent.

Reaction:

$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}=\mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
$5 \mathrm{Fe}^{+2} \quad=5 \mathrm{Fe}^{+3}+5 \mathrm{e}$
$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{+2}+8 \mathrm{H}^{+}=5 \mathrm{Fe}^{+3}+\mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$

PROCEDURE:

A. Preparation of 100 ml ($\mathrm{N} \backslash 10$) standard oxalic acid solution.

Equivalent weight of oxalic acid $=63$
1000 ml of $1(\mathrm{~N})$ oxalic acid solution contain 63 gm oxalic acid.
Hence $100 \mathrm{ml}(\mathrm{N} / 10)$ oxalic acid contain 0.63 gm oxalic acid.
About 0.63 gm of oxalic acid is weighed from a weighing bottle by difference and is poured into 100 ml volumetric flask, dissolved in small volume of water by shaking and the volume is made up to the mark with distilled water and thoroughly shaken.
Therefore, Strength $=x / 0.63(\mathrm{~N} \backslash 10)=\mathrm{S}_{1}(\mathrm{~N})$.

B. Standardization of given permanganate solution against standard oxalic acid solution.

The reaction between KMnO_{4} and oxalic acid is an example of redox reaction. Here acidified KMnO_{4} acts as an oxidizing reagent while oxalic acid is a reducing agent.

Reaction:
$2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}]$
$5 \mathrm{COOH}-\mathrm{COOH}+5[\mathrm{O}]=10 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

C. Titration of given KMnO_{4} solution with standard oxalic acid solution

10 ml of standard oxalic solution are pipetted into a 250 ml conical flask. Now 10 ml of (1:4) $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is added, the solution is warmed to $60-70^{\circ} \mathrm{C}$ and then titrated with the permanganate solution from the burette till first permanganate pink color is seen. And the process is repeated twice.
4. Estimation of $\mathbf{F e}^{\mathbf{2 +}}$ in Mohr's salt.

5 ml of Mohr's salt solution is pipetted out into a 250 ml conical flask. Now 2 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}(1: 4)$ and 20 ml of distilled water is added to the solution. The solution is titrated with standard KMnO_{4} solution till the first permanent pink color is seen.
RESULT:

1. Recording of temperature:

Initial temperature $\left({ }^{0} \mathrm{c}\right)$	Final temperature $\left({ }^{0} \mathrm{c}\right)$	Mean temperature $\left({ }^{0} \mathrm{c}\right)$

2. Preparation of $100 \mathrm{ml}(\mathrm{N} / 10)$ Oxalic Acid solution

Weight taken (gm)	Weight to be taken (gm)	Strength (N)
	0.63	

3.Table: Titration of oxalic acid with KMnO_{4}

Sl.no.	Vol. of oxalic Acid (ml)	Strength of oxalic Acid (N)	Burette reading of KMnO_{4} (ml)			
Mean vol. of (ml)	Final (ml)	Vol. required (ml)				
1.						
2.						

4.Table. Titration of Mohr's salt solution with KMnO_{4} :

Sl.no.	Vol. of Mohr's salt solution(ml)	Strength of of	Burette reading of $\mathrm{KMnO}_{4}(\mathrm{ml})$ (N)			Initial (ml)

CALCULATION:

(A) Strength of KMnO_{4} solution:

We know $\mathrm{V}_{1} \mathrm{~S}_{1}=\mathrm{V}_{2} \mathrm{~S}_{2}$
or, $S_{2}=V_{1} S_{1} / V_{2}$
$=$
Here, $\mathrm{V}_{1}=$ volume of oxalic acid
$\mathrm{S}_{1}=$ strength of oxalic acid
$\mathrm{V}_{2}=$ volume of KMnO_{4}
$\mathrm{S}_{2}=$ strength of KMnO_{4}

(B) Strength of $\mathbf{F e}^{\mathbf{2 +}}$ in Mohr's salt solution:

Volume of KMnO_{4} solution required for Mohr's salt solution $=\mathbf{a c c}=$ \qquad
Strength of KMnO_{4} solution $=\mathbf{y}(\mathrm{N})=$ (N).
$\mathbf{a} \mathrm{ml}$ of $\mathbf{y}(\mathrm{N}) \mathrm{KMnO}_{4}$ solution $\equiv 55.85 \mathrm{X} \mathbf{a} \times \mathbf{y} / 1000 \mathrm{gm}$ of Fe^{2+} $\equiv \mathrm{z} \mathrm{gm}$ of $\mathrm{Fe}^{2+}=$.gm.

1000 ml of Mohr's salt contain $=\mathrm{z} \mathrm{X} 1000 / 5 \mathrm{gm}$ of Fe^{2+}

$$
=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{gm} .=\mathrm{w} \mathrm{gm} \text { of } \mathrm{Fe}^{2+}
$$

Amount of $\mathrm{Fe}^{2+}=\mathrm{w} \mathrm{gm} / \mathrm{lit}=\ldots \ldots . \mathrm{gm} . /$ lit

DISCUSSION:

Estimation of Fe^{+2} was done in the supplied Mohr's salt solution by redox titration using KMnO_{4} as oxidizing agent. All the apparatus were well cleaned with distilled water prior to the experiment. If the apparatus are not cleaned properly, then sole determination of Fe^{+2} in the Mohr's salt solution is not possible as water may contain trace amount of Fe^{+2} ions. The standardization of KMnO_{4} was done by heating oxalic acid solution at $60-70^{\circ} \mathrm{C}$, redox titration will take place to a certain extent and strength of KMnO_{4} will be of lower value. The mineral acid $\mathrm{H}_{2} \mathrm{SO}_{4}$ should be used in the reaction mixture as redox titration takes place under acidified condition. Mineral acid like HCl or HNO_{3} should not be used as HCl reacts with KMnO_{4} and HNO_{3} itself is an oxidizing agent. The use of $\left(\mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{H}_{3} \mathrm{PO}_{4}\right)$ in the Mohr's salt solution is to maintain the proper pH and $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacts with Fe^{+3} to form FePO_{4} and complete oxidation of Fe^{+2} proceeds and the equilibrium shifts to the right $\left(\mathrm{Fe}^{+2}\right.$ to $\left.\mathrm{Fe}^{+3}\right)$. As redox reaction is temperature dependent, estimation of Fe^{+2} is done at a fixed temperature i.e. room temperature.

Conclusion:

The amount of Fe^{2+} estimated in the supplied Mohr's salt solution is gms. /lit at \qquad .$^{0} \mathrm{C}$.

